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Preface

In recent years, an increasing interest in products of natural origin has taken
root in the population. Several processes are being developed to address the
need for these products and, in particular, biotechnology and green chemistry
are the leading areas due to its considerably lower implications of harming
the environment. The specific cases of bioenergy, biomaterials, and biomol-
ecules extraction and production have a strong relation with biotechnology,
which along with green chemistry, contribute to develop technology that
leads to the creation of useful compounds.

The Handbook of Research on Bioenergy and Biomaterials: Consolidated
and Green Processes will give an insight and an understanding of consoli-
date processing-biorefinery systems for biofuels production using tools of
biotechnology, chemical engineering, among other branches of science.

Bioenergy produced by Fischer—Tropsch, gasification, pyrolysis, combus-
tion, and fermentation from renewable sources (such as plants, animals,
and their byproducts) is considered a great technological improvement
in the energy sector in regard to lower our dependence of fossil fuels and
consequently the greenhouse gas (GHG) emissions. In addition to produce
biofuels, researchers are looking for the biorefinery concept perceiving agro-
industrial value chains. As a result, the subject of biorefinery engineering
science may need to grow as a discipline in regard of converting biomass
into useful liquid fuels in an attempt to replace totally or partially the fossil
fuels consumption.

Biomolecules comprise a wide array of compounds with a wide area of
applications. These biomolecules can be included with those with bioactivi-
ties such as antioxidants, antimicrobials, anticancer, among many others.
Enzymes are among these biomolecules and are important to many processes
such as biofuels production, high added-value compounds release, enzy-
matic synthesis of useful compound, degradation of residual materials, and
along many other processes. Production of these types of biomolecules are
significant factors for quality improvement in the way of life of humans and
to increase production in the meat and agricultural industry sector.

Biomaterials are defined as any material that can interact with biological
systems and is also an interesting topic that will be covered in our book. There
are several examples that have been used as a treatment, augmentation, and
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replacement in certain type of tissue or surface. Organic molecules of biolog-
ical origin such as polysaccharides or proteins have been used to interact
with other compounds or polymers to give way to a different material with
new or different features. Also, inorganic molecules have been applied to
interact with living tissues or biological molecules to be applied in several
fields ranging from medicine to industrial processes. Another interesting
aspect in this regard is the fact that microorganisms are able to produce high
molecular weight compounds that can be applied in biomaterials and also
produce precursors that apply in the same manner.

In all the topics that are covered in this publication, the term “consoli-
dated process” plays a pivotal role due to the fact that it means that fewer
unitary operations will be used in a process and in obtaining a more direct
method of production. This type of production systems can contribute to
decrease the negative effects on the environment, lower costs, energy and
time, improving profitability and efficiency.

The editors
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ABSTRACT foods. Different processes to extract

biopolymers and obtain edible coat-
This chapter is about methods to ings and films have been developed
obtain biopolymers and their appli- to increase the postharvest shelf
cation in edible packaging for life of food products and minimally
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processed. This chapter included a
description of processes focused on
extracting natural biopolymers, as
polysaccharides, proteins, lipids. The
properties (e.g., gases and humidity
barrier ability) of edible coatings
and films to reduce the deterioration
of vegetable products are acutely
examined. Also, this work reviews
the parameters that alter the stability
of edible packaging.

14.1 INTRODUCTION

The reduction in the use of nonre-
newable synthetic materials has
promoted research and development
of packaging with lower environ-
mental impact.

Even so, the packaging must
provide the physical and mechanical
properties necessary for food preser-
vation. To achieve this purpose, the
promising materials for the manu-
facture of packaging from renewable
sources are biopolymers (Avérous
and Poller, 2012). A fundamental
characteristic of biopolymers is
that its degradation occurs in short
periods, from weeks to a few months
(Shimao, 2001).

Edible packaging can encapsu-
late antioxidant (Cheng et al., 2015),
antimicrobial (Arismendi et al.,
2013), or nutrients (Vanderroost et
al., 2014). Packaging must be effec-
tive and economically feasible.

Its characteristics depend on the
food product ' application, - which
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might be coated. Vegetable prod-
ucts are perishable (Barbosa-Pereira
et al.,, 2014), affecting the prod-
ucts quality, causing losses during
storage due to various metabolic
reactions that promote the growth of
microorganisms  (Bosquez-Molina
et al., 2003). The biopolymers must
present thermal stability, flexibility,
a barrier to gases and water, should
be nontoxic, and biodegradable (Ali
etal., 2010).

In this chapter, the processes for
biopolymers extraction and its use
in edible packaging to improve the
quality and prolong the postharvest
shelf life of produce and minimally
processed foods are described, as
well as its properties, factors influ-
encing the stability, and the elabora-
tion methods of edible coatings and
films.

14.2 BIOPOLYMERS-BASED
EDIBLE FILMS AND COATINGS

Biopolymers have properties for
film formation and can be used as
cost-effective constituents in the
food industry for encapsulation of
natural bioactive compounds. More-
over, they exhibit useful functional
properties, including gelation, emul-
sification, and water-holding prop-
erties. These properties enable them
to exert specific characteristics,
such as appropriate appearance and
texture, which promote consumer
acceptance.
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14.2.1 BIOPOLYMERS

According to European Bioplas-
tics (2018), the term “biopolymer”
is synonymous with the term
“bioplastic.” The oil’s resources
scarcity and the gradual decline in
synthetic plastics have allowed to
strive toward environmental sustain-
ability (Bilal and Igbal, 2019).
Renewable biomaterials are safer
and green options to reduce waste
generation and environmental pollu-
tion. The development of innova-
tive products from biopolymers has
promoted the growth and develop-
ment of ecological and sustainable
processes allowing a sustainable
economy (Bilal and Igbal, 2019).
Biopolymers, like polysaccharides,
proteins, and lipids, are an alterna-
tive to traditional plastics and to
produce edible coating and films
(Espitia et al., 2014). Globally,
consumers demand high-quality
natural products obtained through
economic processes that do not
affect the environment. Biotech-
nology companies and researchers
have proposed to develop biodegrad-
able technologies with food princi-
ples from biopolymers (Mahalik and
Nambiar, 2010) as composite films
and coatings (Galus et al., 2013;
Kurek et al., 2014). Food packag-
ings are biodegradable technologies
from hydrophilic and hydrophobic
biopolymers with moisture and gas
barrier properties.
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14.2.2 POLYSACCHARIDES

Polysaccharides are composed of
monosaccharides and glycosidic
bonds, in addition to insoluble fibers
(lignin, galactomannans, cellulose,
and xylans) and soluble fibers (arabi-
noxylans, pectins, and arabinogalac-
tans) (Caprita et al., 2010). Poly-
saccharides (NSP) without starch
are principally without a-glucan
polysaccharid.

Table 14.1 describes the param-
eters of the polysaccharides involved
in film-forming.

All these factors (Table 14.1)
influence the main functions,
such as thickening, gelling, film-
forming, foaming, and emulsifica-
tion, which contributes to obtaining
high-quality products with appli-
cations in the pharmaceutical and
food industry.

Polysaccharides are widely avail-
able in nature, are not toxic, and ined-
ible films have selective permeability
to gases (Erginkaya et al., 2014).

14.2.3 PROTEINS

Proteins cover a large amount of
polymeric type compounds that
fulfill specific functions within
plants and animals as the contribu-
tion of biological activity in addition
to providing structure. Proteins are
biomolecules made up of carbon,
nitrogen, hydrogen, and oxygen,
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TABLE 14.1 Factors that Affect the Film-Forming Properties

Factors

Film-Forming Properties

Structural conformation

Polysaccharide ordered conformations depends on the sugar

residues and the glycosidic linkages. The linear polysaccharides
produce good film because assume conformations ranging
from a twofold helix to a sixfold helix that determines how
extended the polymer is and how much can be associated to
form hydrogen bonds, which are responsible for gelling, film
formation, or thickening

Molecular weight

Ionic charge on the
molecule

Steric groups

High molecular weight polysaccharides form stronger films

Tonic groups allow polysaccharides to be more polar by
providing greater capacity to form hydrogen bonds

OH groups of the polysaccharides are esterified by ether

substitution, altering the hydrogen bonds, and influencing the
ability of the polysaccharides to form films

Sources: Patra et al. (2012), Sudo (2011).

which can also contain sulfur,
phosphorus, iron, magnesium, and
copper, among other elements. They
are made up of amino acids, alpha-
amino and alpha carboxyl groups,
and a side chain with different
functional groups. Present multiple
functional properties due to intermo-
lecular binding capacity to different
bond types can be classified based
on the ability of proteins to interact
with water molecules. Protein struc-
ture can be modified through heat,
modifying pH, pressure, mechan-
ical treatments, and among others
(Chiralt et al., 2017). Biodegrad-
able materials have been sought
for inclusion in the food industry,
mainly of plant and animal origin,
for its biodegradability and film-
forming (Calva-Estrada et al., 2019).

Proteins, in general, have various
properties, including that they are
edible and can carry nutrients. When
combined with some other compo-
nents, they become materials with
great advantages due to the networks
that manage to develop when under-
going modifications (Gnanasekaran,
2019). Not only can these biopoly-
mers be used in the food area but
also in different aspects such as in
medicine and engineering to rebuild
or reinforce. In the food packaging
industry, proteins from milk, gelatin,
gluten, egg, zein, soy, among other
sources are the most used because
they can be consumed directly on
food; however, despite the multiple
studies that exist in this regard to
improve and find the best alterna-
tives that are biodegradable.
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14.2.3.1 PLANT PROTEINS
14.2.3.1.1 Soy Protein

Its origin is agricultural and has been
known since the 1930s. The main
feature it has is its emulsifying and
texturing capacity. Its grains contain
approximately 40% protein, among
which two main fractions have been
identified: albumins that are water-
soluble and globulins that are soluble
in saline solutions, representing
80% of total proteins. Remaining
proteins are composed of intra-
cellular enzymes, hemaglutinins,
protein inhibitors, and membrane
lipoproteins (Kinsella, 1979), and
major components are classified
according to their sedimentation
properties. Due to biodegradability
and a nutritional mixture of proteins,
soy proteins promote film-forming.
Several studies have been reported
on its use in the food industry and
recently as packaging materials.

14.2.3.1.2 Wheat Proteins

Wheat proteins are classified for
their solubility and functionality.
These include albumins, globulins,
gliadins, and glutenins (De la Vega,
2009). They can also be found clas-
sified as proteins belonging to or
without gluten. Gluten proteins
account for 80%—-85% of total wheat
proteins. Gluten proteins can be used
for the manufacture of transparent
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and homogeneous packaging with
mechanical properties of interest.

14.2.3.1.3 Corn Zein

Zein is a natural protein generated by
wet milling as a bioproduct. It is a
protein derived from corn endosperm
and is a biodegradable component.
Zein is formed by polypeptides such
as leucine, proline, alanine, serine
and glutamine, and Y-zine that has
a high cysteine content. Jornet-
Martinez et al. (2016) mentioned the
amphipathic structure that is created
and combines a helical structure
with the polyproline, this results in
a hydrophobic material, making it an
alternative for food packaging.

14.2.3.2 ANIMAL PROTEINS
14.2.3.2.1 Whey Protein

The FDA reports that milk proteins
must have all the proteins found
naturally in milk and that they must
be in the same relationships, while
in the whey protein, isolates and
concentrate are obtained by the
elimination of nonprotein compo-
nents and are casein free. These milk
proteins have properties that can
provide desirable textures and other
attributes to the final product. They
have multiple applications in tradi-
tional food products. Various types
of milk protein, such as whey protein
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concentrates, whey protein isolates,
caseins and caseinates, and among
others, can be obtained from waste
generated by industrial complexes.
Whey contains [B-Lactoglobulins
that are obtained as a residue from
the cheese and casein industry (Fox
etal., 2015), which provide the prop-
erties of solubility, thermal stability,
emulsifying, and nutritional value
(Walstra et al., 2005). Protein inter-
actions that occur between chains
determine the network formation of
films and their properties.

14.2.3.2.2 Meat Proteins

They can be classified into three
types: sarcoplasmic, stromal, and
myofibrillar. Collagen is classified
as a fibrous protein and is present
in the skin, tendons, bones, and
vascular and connective tissue of
animals. Due to the presence of
covalent bonds, it is said to form
intermolecular bridges inside, and
disulfide bonds are few due to the
low amount of cysteine present.
It consists of three parallel chains
of the alpha type, which combine
to give rise to a triple-stranded
superhelical structure (Montalvo
et al. 2012). Amino acid sequence
is formed by a repeating chain of
glycine-proline-hydroxyproline
and has been used as packaging for
sausages. Gelatin is generated when
collagen is subjected to hydrolysis
under acidic or alkaline conditions.
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Gelatin has large amounts of proline,
hydroxyproline, lysine, and hydrox-
ylysine. It is used primarily as a
texturing agent. Packaging from
this component is usually clear and
flexible but very hydrophilic. More-
over, in short, myofibrillar proteins
are found in mammals and fish;
they have a secondary structure,
generating packaging with proper-
ties of permeability when subjected
to previous denaturation processes
(Dangaran et al., 2009).

14.2.4 LIPIDS

Lipids are a set of materials used in
the manufacture of food packaging
due to their hydrophobic properties.
Within the components called hydro-
phobic substances, we find waxes,
oils, and resins. Natural waxes such
as candelilla wax, carnauba, bees,
and among others are used in the
industry. Oil-based waxes such as
paraffin, petroleum-derived oils and
vegetables, and resins are also found.

14.2.4.1 WAXES

In recent years, waxes have been
used to give food, especially those
of immediate consumption such as
fruits and vegetables, a better look
compared to the consumer. Waxes
are known to several nonpolar
components that can be synthetic or
natural.- Chemically they are esters
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of fatty acids and long-chain fatty
acids and are characterized by a high
hydrocarbon content (approximately
50%) and a relatively low amount of
volatile esters. Due to their nonpolar
components, they form materials
against humidity (Aguirre-Joya et
al., 2017).

14.2.4.2 ANIMAL AND INSECT
WAXES

They are as the name indicates the
waxes that come from the segrega-
tion of certain insects or animals.
Within this classification, they are
distinguished into two subgroups:
wax that comes from terrestrial
and marine animals. From terres-
trial animals, we find the lanolin
that comes from wool and marine
animals the Spermaceti, which is
no longer marketed. However, the
wax of greater industrial importance
is beeswax. This compound is the
final product of bee metabolism and
is segregated by worker bee glands
(Rhim and Shellhammer, 2005)

14.2.4.3 VEGETABLE WAXES

Vegetable waxes are the result of the
climatic conditions in the regions
where many plants are found.
Generally, plants store waxes in the
epidermis of their leaves as protec-
tion against water evaporation, espe-
cially in drought season. They are

397

classified into waxes of trees and
shrubs and in turn from the section
where the wax is found as leaves,
stems, root, and among others. The
most used commercial waxes are the
carnauba wax for the production of
preservation agents, cleaning, emul-
sions, and among others. Another, the
widely used waxes for the manufac-
ture of cosmetics, foods, and phar-
maceuticals is candelilla wax, which
is generated in semidesert plants and
is found in stems and leaves (Rhim
and Shellhammer, 2005).

14.2.4.4 FATS

Fats are polar and neutral lipids
insoluble in water with the ability to
form a stable hydrophobic layer on
a surface. They are used as emulsi-
fiers and dispersing agents forming
interfacial micelles. The classifica-
tion of this group of lipids is given
by two fractions: either by the degree
of saturation (saturated and unsatu-
rated) or by the length of the chain
(short, medium, and long) (Isabel
Castro-Gonzalez, 2002). Saturated
fats have a higher melting point
and greater water permeability than
unsaturated fats.

14.2.4.5 RESINS

Resin is a viscous substance from
vegetable (hydroaromatic structure)
or of synthetic origin (higher degree
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of polymerization) with mechanical,
emulsifying, and adhesive properties.

14.3 BIO-BASED POLYMERS
EXTRACTION METHODS

Currently, there are several conven-
tional and innovative methods for
biopolymers extraction, where the
yield depends mainly on geograph-
ical conditions of the raw mate-
rial, physical, and chemical param-
eters, used solvent, and its polarity.
Therefore, the different methods of
extracting the main biopolymers as
proteins, polysaccharides, and lipids
are described below.

14.3.1 POLYSACCHARIDES

Natural polysaccharides such as
mucilage, starch, and pectin, present
selective permeability to gases
(Ergincaya et al., 2014). The extrac-
tion of the polysaccharides is based
on methods that use solvents, water,
salts, and acids (Table 14.2).

14.3.2 PROTEINS

Proteins and peptides are obtained
during the technological process, and
many extraction methods involving
enzymatic hydrolysis, and among
others. Protein extraction methods
are shown in Table 14.3.
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14.3.3 LIPIDS

Lipids such as vegetable oils and
waxes are a very heterogeneous
family of compounds that mini-
mize moisture loss, provide gloss,
and flexibility, in addition to reduce
complexity, and cost of films and
edible coatings. They present hydro-
phobicity as a common characteristic
and dissolve in organic solvents. In
order to carry out the extraction of
the most used lipids in films and
edible coatings for its application in
foods, several methods have been
proposed (Tables 14.4-14.9).

14.3.3.1 VEGETABLE OILS

Vegetable oils as sunflower oil,
jojoba oil, palm oil, coconut oil, and
cocoa butter are mainly composed of
triglycerides as palmitic acid, stearic
acid, oleic acid, and linolenic acid.
They are used in films and edible
coatings with the aim of decrease
intramolecular forces.

14.3.3.2 SUNFLOWER OIL

Sunflower oil is obtained from the
sunflower seed and contains a high
concentration of vitamin E and low
levels of saturated fat. The pressing
method is commonly used to extract
sunflower oil. New methods have
been developed for the extraction
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TABLE 14.3 Protein Extraction Methods
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Extraction Method Food Reference

Cell disruption methods

Homogenization

Milling and homogenization — Rice Toldra and Nollet (2013)

Olive tree seeds

Green Alga
Ultrasonic homogenization Peanut

Milk
Pressure homogenization Milk

Microalgae
Temperature treatments

Whey proteins
Enzymatic treatments Soybean

Algae

Lentelis and White beans

Osmotic and chemical lysis Spiruline
Ginseng roots

Protein Solubilization/ Bovine serum

Precipitation
Soybean

Aqueous solutions Almond

Wang et al. (2015)

Wang (2017)

Ashokkumar et al. (2010)
(Doona and Feeherry (2008)

Mulchandani, Kar and Singhal
(2015)

Schmid and Muller (2018)
Ndlela et al. (2012)

De Moura et al. (2011a)
Wang et al. (2015)

Bildstein et al. (2008)
Hadiyanto and Adetya (2018)
Jiang et al. (2014)

McArt et al. (2006)

De Moura et al. (2011b)
Ge et al. (2016)

of sunflower oil, the most used is
the extraction with solvents such
as hexane, isopropyl alcohol, and
petroleum ether (Table 14.4), where
the hexane shows high yield at the
12 h of extraction. However, there
are many environmental limitations
regarding the use of solvents. It is
also highlighting the use of solvents
as the hexane and ultrasound irra-
diation, with the aim of decrease the
extraction time in the process (90

min) in comparison with solvents
extraction, obtaining high yields
similar to those obtained in hexane
extraction (Table 14.4).

14.3.3.3 JOJOBA OIL

Jojoba oil is obtained from seeds of
the jojoba Simmondsia chinensis.
Jojoba oil is of light color and
contains a mixture of triglycerides
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TABLE 14.4 Methods to Extract Sunflower Oil
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Extraction Parameters (w:v, Solvent, Yield (%) Reference
Method Temperature, Time)
Extraction with  Seed=5g 37.9 Fornasari et al.
solvents Hexane = 200 mL (2017)
T=100"°C
t=8h
Extraction with  Seed=5g 36.8 Fornasari et al.
solvents Petroleum ether = 200 mL (2017)
T=100°C
t=8h
Extraction with  Seed=50g 543 Rai et al. (2015,
solvents Hexane = 300 mL 2016)
T=50°C
t=24h
Extraction with  Seed=10g 46.2 Ravber et al.
solvents Hexane = 200 mL (2015)
T = Normal boiling point
t=4h
Extraction with  Seed=10g 99.0 Luque-Garcia and
solvents Particle size = 2.0 mm Luque de Castro
Hexane = 100 mL (2004)
t=12h
7=85°C
Extraction with  Seed =50 g 44.4 Gallegos-Infante
solvents Hexane = 189 mL et al. (2003)
T=69.5°C
Extraction with  Seed=50g 434 Gallegos-Infante
solvents Isopropyl alcohol = 159 mL etal. (2003)
T=82°C
Ultrasound- Seed=10g 99.0 Luque-Garcia and

assisted Soxhlet

Particle size = 2.0 mm
Hexane = 100 mL
T=85°C

Ultrasound irradiation of the cartridge
for 30 cycles (90 min, output amplitude
40% of the nominal amplitude of the
converter, applied power 100 W)

Luque de Castro
(2004)
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and long-chain esters of unsaturated
fatty acids. Commonly, jojoba oil
is obtained by pressing the seeds
obtaining yields between 30% and
43% (Table 14.5), depending on
the number of pressures that are
applied during the process. The use
of solvents such as hexane, chloro-
form, and petroleum ether, allows
us to obtain yields of 52%-94.2%,
32.5%, and 92.2%, respectively, thus
hexane being the most used solvent.
The most recent method of extrac-
tion is a supercritical fluid, which
uses a mixture of solvents as CO, +
propane, CO, + ethanol, and hexane,
obtaining yields of 98%, 80%, and
94%, respectively, and showing the
highest yields (Table 14.5). CO,
is also used; however, this method
shows lower yields (44%-50.6%)
in comparison with the disolvents
mixture (Table 14.5). Therefore, the
yields obtained by the supercritical
fluid method depend on the polarity
of the solvent, as well as the temper-
ature and pressure applied in the
process.

14.3.3.4 PALM OIL

Palm oil is rich in triglycerides and
is extracted from the palm Elaeis
guineensis Jacq. Yield depends on
the variety of the palm (Table 14.6).
Commonly palm oil is extracted
by manual pressing with yields
of 33%-35% of palmitic acid
and 42.2%-43.3% of ~oleic acid
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(Table 14.6), which are lower than
those obtained by hydraulic and
mechanical pressure (Table 14.6).
Where the mechanical pressure of
the seed pretreated with preheating,
cracking, and flaking turned out to
be the process with the highest oil
yield (Table 14.6) compared to the
hydraulic pressure process of the
seed pretreated with preheating,
cracking, and flaking (Table 14.6).

14.3.3.5 COCONUT OIL

Coconut oil is obtained from C.
nucifera. Also, this oil does not
undergo degradation at high temper-
atures. Coconut oil is commonly
obtained by heating, where the
coconut undergoes a process of
cracking, flaking, and scratching
of the pulp, to subsequently boil
the pulp in water, and separate by
density, with this process the highest
oil yield is obtained (Table 14.7).
The solvent extraction method,
mainly with hexane, has the lowest
oil yield (Table 14.7). Another inno-
vative method for coconut oil extrac-
tion is the method of extraction with
saline solution (sodium chloride salt)
using temperature, which proved to
obtain a yield of 60% (Table 14.7).

14.3.3.6 COCOA BUTTER

Cocoa bean (Theobroma cacao)
consists: mainly, of cocoa butter,
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TABLE 14.5 Main Methods of Jojoba Oil Extraction
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Extraction Parameters (Pressure, Solvent, Time, Yield (%) Reference
Method Number of Pressing, Temperature,
Particle Size and Pretreatment Process)
Supercritical Solvent = 30%CO, + propane 98 Palla et al.
fluid P (bar) =70 (2014)
T(K)=313
Supercritical Solvent = 30%CO, + ethanol 80 Salgin (2007)
fluid P (MPa)=35y45
T(K)=363
Supercritical Solvent = ScCO, 44 Salgin (2007)
fluid P (bar) =450
T(K)=343
Supercritical Solvent = ScCO, 50.6 Salgin et al.
fluid P (bar) = 600 (2004)
T (K)=363
Extraction with  Particle size (mm) = 0.48 mm 55 Allawzi et al.
solvents Solvent = Hexane (2005)
Extraction with  Particle size (mm) < 1 mm 325 Salgin et al.
solvents Solvent = Chloroform (2004)
t=18h
Extraction with  Relation Disolvent/solid (L/Kg) = 15 94.2 Zaher et al.
solvents Solvent = Hexane (2004)
¢t =30 min
T=55°C
Extraction with  Relation disolvent/solid (L/kg) = 15 92.2 Zaher et al.
solvents Solvent = Petroleum ether (2004)
¢t =30 min
T=55°C
Extraction with  Particle size (mm) <1 mm 52 Abu-Arabi et
solvents Solvent = Hexane al. (2000)
t=18h
Traditional Type of press = Hydraulic 354 Abu-Arabi et
Number of pressing = 1 al. (2000)
Pretreatment process = none
Traditional Type of press = Hydraulic 43.8 Abu-Arabi et
Number of pressing = 2 al. (2000)
Pretreatment process = Breaking
Traditional Type of press = Rosedowns 38.2 Rawles,
Number of pressing = 1 (1978)
Pretreatment process = Preheating
Traditional Type of press = Hander 35-39 Rawles,
Number of pressing = 1 (1978)

Pretreatment process = Preheating
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TABLE 14.5 (Continued)

Extraction Parameters (Pressure, Solvent, Time, Yield (%) Reference

Method Number of Pressing, Temperature,
Particle Size and Pretreatment Process)

Traditional Type of press = Hander 4042 Rawles,
Number of pressing = 2 (1978)
Pretreatment process = Preheating

Traditional Type of press = Hander 43 Rawles,
Number of pressing = 3 (1978)
Pretreatment process = Preheating

Traditional Type of press = Hydraulic 30.8 Spadaro and
Number of pressing = 1 Lambou
Pretreatment = Cracking and flaking (1972)

TABLE 14.6 Methods to Extract Palm Oil

Extraction Parameters (Variety of Yield (%) Reference
Method Plant Species, Type of Press,
Pretreatment)
Traditional  Variety of plant species Palmitic acid = 33.1 Sandoval-Garcia et
=D. x Ekona Oleic acid =43.3 al. (2016)

Type of press = Manual
Number of pressing = 1
Pretreatment process = none
Traditional  Variety of plant species Palmitic acid = 35.4 Sandoval-Garcia et
=D. x Ghana Oleic acid =42.2 al. (2016)
Type of press = Manual
Number of pressing = 1
Pretreatment process = none
Traditional ~ Variety of plant species Palmitic acid = 34.2 Sandoval-Garcia et
= D. x Nigeria Oleic acid =43.3 al. (2016)
Type of press = Manual Number
of pressing = 1 Pretreatment
process = none
Pressing Variety of plant species 97y 99 Jaimes-M. et al.
= E. guineensis Jacq. (2012)
Type of press = Mechanic
Number of pressing = 1
Pretreatment process =
Preheating, cracking, flaking
Pressing Variety of plant species Lauric acid=51.0  Hernandez and
= Acrocomia aculeata Mieres-Pitre (2005)
Type of press = Hydraulic
Number of pressing = 1
Pretreatment = Cracking and
flaking
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TABLE 14.7 Main Methods of Coconut Oil Extraction

Extraction Extraction Conditions

Method

Yield (%) Reference

(w: v, Pretreatment Process,

Temperature, Time, Solvent)

Traditional Coconut pulp=1350 g

Pretreatment process = cracking,

flaking, striped coconut
T=98°C
t=2h

Relation disolvent/solid
(mL/g) =300/80

Solvent = Hexane
t=152h
T=62°C

Extraction with
solvents

Extraction with
saline solution
=90

t=1h
T=160°C

Relation water/solid (mL/g) 60
=1000/75 sodium chloride salt (g)

222 Da Silva-Rodriguez

(2017)

57-64 Rivera-Herndndez et

al. (2001)

Ramos-Ramirez and
Salazar-Montoya
(1995)

which is considered as unique, due
to its chemical composition. Cocoa
beans pretreated by fermentation,
drying, and toasted give yields of
50% (Table 14.8). New methods have
been implemented for the extrac-
tion of cocoa butter, as the super-
critical method, that used pressure
(35 MPa), temperature (60 °C), and
mixture of solvents as CO, + 25%
ethanol, CO, +25% isopropanol, and
CO, + 15% acetone obtaining yields
of 100%, 96.7%, and 84%, respec-
tively (Table 14.8). Other methods
with high yield consist of the extrac-
tion with solvents as the #-butanol
mixed with a solution of ammonium
sulfate, where the system adjusts to

pH 2, and it is heated at 45 °C for
2 h (Table 14.8). Therefore, there is
a demand for green technologies as
the ultrasound-assisted supercritical
method and supercritical method,
using CO, as an extraction solvent,
obtaining yields of 37.5% and
30.6%, respectively (Table 14.8).

14.3.4 WAXES

Waxes refer to a wide variety of
substances of vegetable and animal
origin because they comprise a mix-
ture of several long-chain fatty acids
and other components. Consumers
prefer natural and sustainable
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TABLE 14.8 Processes to Extract Cocoa Butter

Extraction Extraction Conditions (w:v, Solvent, Yield Reference
Method Pressure, Temperature, Time, Type of Press, (%)
Number of Pressing, Pretreatment Process)
Supercritical Cocoa beans (g) = 100 30.6 Rodriguez et
Solvent = CO, al. (2014)
P (bar) =550
T(°C)=40
t =360 min
Supercritical Cocoa beans (g) = 10 100 Asep et al.
Solvent = CO, + 25% ethanol (2013)
P (MPa) =35
T (°C)=60
Flow rate =2 mL/min
Supercritical Cocoa beans (g) = 10 96.7 Asep et al.
Solvent = CO, + 25% isopropanol (2013)
P (Mpa) =35
T(°C)=060
Flow rate =2 mL/min
Supercritical Cocoa beans (g) = 10 84 Asep et al.
Solvent = CO, + 15% acetone (2013)
P (MPa) =35
T (°C)=60
Flow rate =2 mL/min
Supercritical Cocoa beans (g) =30 100 Saldafia et al.
Solvent = ethane (2002)
P (MPa)=28.3
T(K)=3432
Ultrasound- Cocoa beans (g) = 100 37.5 Rodriguez et
assisted Solvent = CO, al. (2014)
supercritical P (bar) =550
T(°C)=40
t =360 min
Ultrasound irradiation (resonance frequency of
30 kHz and constant energy of 58 W)
Extraction with  kokum kernel powder (g) = 1 95 Vidhate
solvents Three phase partitioning system = distilled and Singhal
water (16 mL), ammonium sulphate (50% w/v) (2013)
and t-butanol (0.5:1-3:1)
pH=2
t=2h
T=45°C
Traditional Type of press = Mechanic 50 Codini et al.

Number of pressing = 1

Pretreatment process = Fermentation, drying,

toasted

(2004)
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products, which increased the
demand for natural waxes global
(Attard et al., 2018), mainly the
carnauba wax, candelilla wax, and
beeswax.

14.3.4.1 CARNAUBA WAX

Carnauba wax is obtained the dried
and crushed the palm leaves of
Copernicia prunifera (Dantas et
al., 2013). There are many envi-
ronmental limitations regarding the
use of dangerous solvents. There
have been many efforts in order to
find cleaner methods, one of these
methods is the use of supercritical
fluids (Table 14.9), such as CO, as
a solvent which is inexpensive and
completely inert (Palla et al., 2014).
Also, obtaining a performance of
carnauba wax superior (97%) to that
obtained with the use of solvents
(3.4%), due to the use of high
pressures.

14.3.4.2 CANDELILLA WAX

Candelilla wax is obtained from
Euphorbia antisyphilitica Zucc. The
common name of the plant “candel-
illa” comes from the particular form
of the stems of the bush, which are
long, straight, erect, covered, with
wax, and with the appearance of
small candles (De Leo6n-Zapata,
2008; Rojas-Molina et al., 2013).
Traditionally, candelilla- wax is
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extracted with concentrated sulfuric
acid to separate the wax in the
form of foam (Table 14.9). Candel-
illa wax is also obtained by solvent
extraction as aliphatic and aromatic
hydrocarbons, but it is flammable
and not renewable. Hence, an effi-
cient, economical, and eco-friendly
method is required as the extraction
method with citric acid in combina-
tion with temperature and presion
obtaining yields of 4-6% of wax
(Table 14.9). Another method is the
accelerated drying and scraping of
candelilla stems obtaining a yield of
4% of wax (Table 14.9). However, it
takes a lot of work and time since it
is necessary to scrape stem by stem.

14.3.4.3 BEESWAX

The  physicochemical  proper-
ties of the wax depend on the bee
species (Reybroeck et al., 2010).
Commonly, the wax is extracted by
methods that use heat to melt the
wax (Table 14.9). In order to produce
high-quality wax, it is recommended
not to heat at too high temperature
and for too long time, because that
may damage darken its color. Wax
should be heated in containers made
of stainless steel. Combs containing
fermented honey should not be
melted in order to prevent wax off
odor, and water with a low mineral
content should be used to avoid the
formation of water-wax emulsions
(Bogdanov, 2004).
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TABLE 14.9 Main Methods of Waxes Extraction

Wax Extraction Extraction Conditions Yield Reference
Method (w:v, Solvent, Pressure,
Temperature, Time, Flow Rate)

Carnauba Supercritical fluid Milled date palm leaves (g) =100 97 Al Bulushi et al.

wax Solvent = CO, (2018)

P (bar) =400

T(°C)=100

Flow rate = 40 g/min

t=2h
Carnauba Extraction with ~ Milled date palm leaves (g) =10 3.4 Al Bulushi et al.
wax solvents Solvent = Heptane (2018)

t=5h
Carnauba Dried and crushed The leaves are collected, dried —  Morales-
wax and crushed to open the plant Hernandez

tissue and then beaten to separate (2015)

the wax as a powder
Candelilla Organic acids Candelilla stems (kg) = 1 4-6 De Leo6n-Zapata
wax Acid = 0.05% citric acid etal. (2016)

P (kg/cm?) =1.05

t=5min

T=100°C
Candelilla Accelerated drying Candelilla stems (kg) = 0.5 4  Ahumada-Lazo
wax and scraping Drying = for 48 h at 40 °C (2012)
Candelilla Traditional Candelilla stems (kg) = 1 4  De Leén-Zapata
wax Acid = concentrated sulfuric acid (2008)

¢t =30 min

T=90-100 °C
Candelilla Extraction with ~ Solvent = aliphatic and aromatic —  Taboada-Reyes
wax solvents hydrocarbons or a mixture of (1992)

both

¢t =50 min

T=100°C
Candelilla Pressing Type of press = Mechanic —  Trevino-Garcia
wax Number of pressing = 1 (1929)

Pretreatment process = None
Beeswax  Traditional Extraction with hot water, steam, —  Bogdanov

heat from electrical or solar (2004)

power, to melt the wax
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14.4 EDIBLE PACKAGING FOR
FOOD APPLICATION

The challenge of the agrifood
industry is to maintain the quality and
organoleptic properties of the fresh
vegetable products. In this context,
edible coatings have been incorpo-
rated in food processing, because
they protect them from water loss
during the transpiration in posthar-
vest. Typically, the major constitu-
ents are biopolymers, mainly poly-
saccharides (e.g., chitosan), proteins
(e.g., whey protein), and lipids (e.g.,
beeswax) that can be extracted from
products and by-products of the agri-
food industry. This section discusses
the properties, qualities, and effect
on shelf life extension that different
materials used in the formation of
edible coatings.

14.4.1 POLYSACCHARIDES,
PROTEINS, AND LIPIDS FOR
VEGETABLE PRODUCTS IN
POSTHARVEST

Hydrocolloids (protein and polysac-
charides), lipids (fatty acids, waxes,
oils, and resins), and composites
(interaction between hydrocolloids
and lipids) (Dhall, 2013; Valencia-
Chamorro et al., 2011) must be
selected according to the ripening
profile and the surface characteris-
tics of the fruits and vegetables to
be coated (Flores-Lopez et al., 2016;
Yousuf et al., 2018).
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14.4.2 HYDROCOLLOIDS

Whey protein (Schmid et al., 2017),
chia protein (Capitani et al., 2016),
gelatin (Ahmad et al., 2012), soy
protein (Yousuf and Srivastava,
2019), corn-zein (Boyaci et al.,
2019), and among others are widely
used for food packaging. Protein-
based materials form coatings/
films (Hassan et al., 2018) pliable,
and translucent (Yousuf et al.,
2018), and also present mechanical
properties due to the possibility of
forming different types of linkages;
although their hydrophilic nature
results in high water vapor perme-
ability (Feng et al., 2018; Flores-
Lopez et al., 2016).
Polysaccharides have a selective
permeability to gases (O, and CO,);
however, their hydrophilicity also
influences their water vapor perme-
ability. The most commonly used
polysaccharides are alginate (Valero
et al., 2013), chitosan (Vieira et al.,
2016), pectin and cellulose (Moale-
miyan et al., 2012; Pastor et al.,
2010), starch (Garcia et al., 2012),
carrageenan (Hamzah et al., 2013)
and, so on. The research into novel
natural sources of polysaccharides
for the build of edible coatings/
films with improved properties has
received world attention. Cerqueira
et al. (2009) designed edible coat-
ings based on galactomannans
from Adenanthera pavonina and
Caesalpinia pulcherrima seeds, to
be applied in tropical fruits. Also,
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Dick et al. (2015) investigated the
effect of glycerol on the physico-
chemical and mechanical properties
of chia mucilage-based film. The
films were found to have a uniform
and transparency appearance as the
glycerol concentration increased.
The use of residues from the agri-
food industry has also allowed us to
obtain polysaccharides with prop-
erties to form bio-packaging. For
instance, Torres-Leon et al. (2018)
developed a new edible film based
on mango (var. Ataulfo) by-prod-
ucts to extend the shelf life of
peach. This improved surface prop-
erties and reduced gas transfer rates
of the fruit.

14.4.3 LIPIDS

Lipids repel water due to its hydro-
phobic property (Hassan etal., 2018),
in addition, its low gas permeability
and its protective capacity in refrig-
eration conditions allow them to be
an excellent alternative for noncli-
macteric fruits (Flores-Lopez et al.,
2016). Within this group, the appli-
cation of waxes and oils (synthetic
and natural) has been a recurring
activity since ancient times (Dhall,
2013). Paraffin wax and beeswax
are the most effective lipid materials
but alternative naturals waxes have
become more acceptable in recent
years, as in the case of candelilla
wax. Candelilla wax based coating
formulations " have been shown  to
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prevent senescence of strawberries
(Oregel-Zamudio et al., 2017) and
avocados (Saucedo-Pompa et al.,
2009). However, lipid-based coat-
ings are characterized by improperly
adhering to the surface, promote
anaerobiosis, and altering the appear-
ance and taste of the product to be
coated (Hassan et al., 2018; Flores-
Lopez et al., 2016; Perez-Gago et al.,
2002).

14.4.4 COMPOSITES

Composites are defined as a blend of
hydrocolloids (i.e., polysaccharides
or proteins) and lipids (Dhall, 2013),
in order to improve their character-
istics (e.g., mechanical properties
or permeability) while minimizing
their drawbacks (Tharanathan, 2003;
Valencia-Chamorro et al., 2009;
Chiumarelli and Hubinger, 2014;
Oliveira et al., 2018). Also, the use
of composites can reduce the costs of
the final coating/film.

14.4.5 USE OF NATURAL
ADDITIVES IN EDIBLE
PACKAGING

Fresh vegetable products coated with
edible films are a reality (Hassan et
al., 2018; Yousuf et al., 2018; Zhao,
2019) forming a barrier against
microbial attack and growth, and gas
exchange control (the main posthar-
vest problems) (Ortega-Toro et al.,
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2017; Ncamaetal.,2018). Promoting
the retention of nutritional quality
(Figure 14.1). Also, these systems
are capable of carrying natural
bioactive compounds, for example,
antimicrobial, antioxidant, nutrients,
and flavorings, from various sources
within their matrix (Hassan et al.,
2018), limiting the use of synthetic
chemicals due to their possible agro-
toxicological effects on environ-
ment and consumers (Ponce et al.,
2008; Vieira et al., 2016). Minimally
processed vegetable products are
extremely perishable, being more
susceptible to the physical, enzy-
matic, microbiological, and conse-
quently at organoleptic level (Yousuf
and Srivastava, 2019; Thakur et al.,
2019). The use of edible coatings/
films becomes an indispensable alter-
native in their preservation and this

Edible
coatings / films
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reality is triggered by the consumers’
demand for durable, safe, and stable
food without compromising the
environment through nonbiodegrad-
able packaging. Table 14.10 shows
some recently developed works,
with examples of base compositions
with and without incorporation of
bioactive/antimicrobial agents and
their effects when applied to a deter-
mined fresh or minimally processed
fruit or vegetable.

14.5 PRODUCTION OF EDIBLE
COATINGS AND FILMS

Edible packaging can be edible films
or coatings, edible coatings are liquid
produced by wet methods, and films
are solid laminates produced by dry
methods.

Volatile

& } compounds

)
Water vapor {,.._}'
Gases A i g @ !
(0;,C0;) P y @ o<y
v S \“ﬁ
S "™ Antimicrobial & -
Bicact
" cmﬁu:;s - antioxidant effects”
Shelf life '
extension

FIGURE 14.1 Edible coatings/films as gas and water vapor barrier and vehicle of natural

additives to protect fresh vegetable products.
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14.5.1 DRY PROCESSING

Biopolymers extracted from biomass,
such as proteins, that behaves as ther-
moplastic materials which they are
excellent for processing packaging
by dry processing (Table 14.11).
Sustainable use of natural
resources for the development of
edible coatings and films has taken
important global. The most used
biopolymers for its elaboration are
pectin (Lei et al., 2013; Younis and
Zhao, 2019), starch (Galindez et al.,
2019; Yildirim-Yalcin et al., 2019),
cellulose, zein (Spasojevic et al.,
2019), carboxymethyl cellulose
(Ruan et al., 2019), methylcellulose
(Matta et al., 2019), chitosan (Younis

Handbook of Research on Bioenergy and Biomaterials

and Zhao, 2019), agar (Wang et al.,
2018), alginate (Salama et al., 2018;
Fabra et al., 2018), konjac (Lei et
al., 2019), carragenans (Tavassoli-
Kafrani et al., 2015), gelatin (Dou
et al., 2018), Cassia gum (Cao et
al., 2018), mucilage (Gheribi et
al., 2018), maltodextrin (Zhang et
al., 2019), egg yolk (Fuertes et al.,
2017), Tara gum (Ma et al., 2016),
and many others. However, the
methodology for its preparation is
variable from the use of different
temperatures, times, stirring, and
concentration is according to each
polymer used (Table 14.12).

Edible film production consists
of solubilizing the base polymer and
adding some plasticizer (glycerol)

TABLE 14.11 Main Methods for Obtaining Edible Films by Dry Processing

Methods Process Finality Reference

Thermoforming The biopolymer Elaboration of =~ Hernandez-Izquierdo and
is heated and containers Krochta (2008)
transformed

Thermopressing The biopolymer is Elaboration Hernandez-1zquierdo and
subjected to high and of multilayer Krochta (2008)
low temperatures materials

Extrusion The biopolymer is Edible films Ullsten et al. (2006)
subjected to shear, manufacturing

high-temperature
compression, and
cooling

Barone et al. (2006)

Hernandez-1zquierdo et al.
(2008)

Krishna et al. (2012)

Rouilly et al. (2006)
Arvanitoyannis and
Biliaderis (1999)

Fishman et al. (2000)
Flores et al. (2010)
Liet al. (2011)
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to prevent the film from fracturing
once it dehydrates. The agitation and
temperature depend on the polymer.
The incorporation of additives
depends on the use and application
of the film and ranges from pure
compounds, raw extracts, oils, waxes
(to reduce permeability). Finally,
they are dehydrated at temperatures
not exceeding 50 °C for up to 48 h.

14.5.2 WET PROCESSING

Wet processing consists of dissolving
the biopolymers with additives
and conditioners; this is applied by
immersion in the food promoting
its spreading over the surface, and

Handbook of Research on Bioenergy and Biomaterials

finally, it dried by solvent evapora-
tion (29.13). However, this proce-
dure is not feasible at the industrial
scale, mainly by the long drying time
(24 h).

An alternative to overcome the
various problems of food preserva-
tion is the development and appli-
cation of composite coatings from
polysaccharides (Formiga et al.,
2019), proteins (Ananey-Obiri et al.,
2018), or lipids (Rojas et al., 2015)
on their blends. The main produc-
tion processes of edible coatings are
shown in Table 14.14.

In general, the production of
edible coatings consists solubilize
the polymer by up to 5% (depends on
its solubility and its water retention

TABLE 14.13 Wet Processing to Produce Edible Coatings

Methods Process

Finality

Reference

Tape Film-forming solution is

Manufacturing of paper,

De Moraes et al. (2013)

casting  castasathinlayerona  plastic, ceramic, paint and Guillaume et al. (2010)
tape and is dried by heat edible, or synthetic films  Farris et al. (2010)
conduction to coat paper, improved the Gastaldi et al. (2007)

barrier to transmission of  Han and Krochta (2001)
oxygen, carbon dioxide,

water vapor and UV

radiation, in addition to the

adherence, transparency,

and oil resistance

Edible Consists of dipping Preserve fresh products Cisneros-Zevallos and

coatings the food in the coating of vegetable and animal Krochta (2003) Vargas
solution. The main origin et al. (2008) Kim et al.
parameters for the (2008)

elaboration of the edible
coating are the density,
viscosity, superficial
characteristics of product,
and the surface tension
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capacity). The use of surfactants is
more common. In the case of coat-
ings, the particle size of the emulsion
is of great importance, as it is homog-
enizes at up to 25,000 rpm. The use
of additives depends on the purpose
(antimicrobial and antioxidant).

14.6 STABILITY OF EDIBLE
PACKAGING

The short shelf life of fresh and
processed foods has been a human
concern since food is scarce and
population growth. Because of their
physical structure (water activity,
nutrients as carbohydrates, proteins,
and minerals), foods are susceptible
to microbial spoilage and degra-
dation. Thus, microbiological and
physiological activities play a role in
quality degradation during storage.
Nowadays there are some serious
environmental and health problems
due to plastic packaging uses and
their disposal conditions (Haward,
2018; Chae and An, 2018; Windsor,
2019; Lebreton and Andrady,
2019). Promoting an environmental
mentality and the development of
various scientific studies to obtain
edible and biodegradable packag-
ings from natural sources like fruits
and vegetables peels and kernels
(Wuetal., 2019; Nawab et al., 2018)
with good sensory attributes; high
barrier and mechanical properties;
biochemical, physicochemical, and
microbial stability (Brody, 2011).

Handbook of Research on Bioenergy and Biomaterials

14.6.1 REORGANIZATIONS OF
THE FILM MATRIX AND COATING

The contact of the packaging with
the food depends on the molecular
size of the biopolymer, the chemical
nature of the compounds, the temper-
ature and process conditions, and the
film structure. When a coating is in
contact with food, the film-coating
evaporation flux at the interface
between the film-coating/environ-
ment should be evaluated, as well
as the coating absorption flux on the
food due to the interface between
the food/film-coating (Montero-
Garcia, 2016). Edible films-coating
needs one or more additives in
order to carry functional compounds
intended to provide the improved
characteristics (sensory, nutritional,
microbiological, enzymatic, color,
and other chemical reactions). Reor-
ganizations of the matrix depend on
the type of polymer and its func-
tional groups, the concentrations
of plasticizers and additives added.
A high concentration of additives
could generate undesirable odors,
turbidity, and promote lipid oxida-
tion (Wambura et al,, 2011). The
dose of the active compounds needs
to be relatively low (Silva-Weiss et
al., 2013). The selection of natural
additives and their application
depends on their properties (antioxi-
dant, antimicrobial, antibrowning),
cost-effectiveness, and effect on the
sensory attributes of the final product
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(Perumalla and Hettiarachchy, 2011).
The reorganization of the edible
matrix is related to the wounding-
to response of the biological mate-
rial (starch crystallization, protein
aggregation, and plasticizer migra-
tion), chemical degradation (lipid
oxidation, nonenzymatic browning,
degradation of active compounds),
and enzymatic degradation (prote-
olysis). The starch crystallizes due
to the plasticizers content (Perez
Sira and Dufour, 2017) and has low
stability upon storage due to retro-
gradation (recrystallization) process
of starch. Retrogradation can be
minimized by adding cellulose as a
matrix filler (Benito-Gonzalez et al.,
2019). Plasticizers provide greater
flexibility to the polymeric matrix
and reduce the original brittleness
of biopolymers. Plasticizers do not
chemically interact with the back-
bone chain but position themselves
between the polymer molecules to
reduce polymer chain-to-chain inter-
action (Kadzinska et al., 2019). The
most studied and suitable plasticizer
is glycerol, due to its marked hydro-
philic nature as compared to sorbitol
(Jiménez et al., 2018). Nowadays the
research has been focused on finding
other sources of plasticizers, in order
to fulfill the main limitations of glyc-
erol use (high hydrophilicity, low
thermal stability, and surface migra-
tion over time) (Blanco-Pascual,
2016). Gheribi et al. (2018) devel-
oped an edible film with a mixture of
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mucilage from Opuntia ficus-indica
cladodes and sorbitol as plasticizer,
reaching water vapor permeability
values up to three times lower than the
other films evaluated. Other research
works have a focus in using different
materials, like chia seed mucilage
(Dick et al., 2015), chitosan (Sabbah
et al., 2019), epigallocatechin gallate
and carboxymethyl cellulose (Ruan
et al., 2019), and among others.
Proteins can also have a similar
function as a plasticizer, either both
plant and animal sources, the amino
acid functional groups in proteins
can improve the stability and form
an extended structure of the films.
Formulations from polysaccharides
and proteins show better structural
properties than individual proteins
(Cerqueira et al., 2011; Jiménez et
al., 2018).

14.6.2 CHEMICAL
DEGRADATION

Lipids used as hydrophobic mate-
rial is well-known and is not strange
its use as the barrier in foodstuffs;
however, the inconvenience lays in
the lipid oxidation. Lipid oxidation is
a process that results in rancidity and
deterioration of fats and progresses
via free-radical propagated chain
reactions, which yields hydroperox-
ides that cause a variety of secondary
reactions with the evolution of alde-
hydes, ketones, acids, and other



420

low-molecular-weight volatile
substances (Ramis-Ramos, 2003).

14.6.3 ENZYMATIC
DEGRADATION

Minimally processed foods as fruits
and vegetables (Yoruk and Marshall,
2003), meat and meat products
(Hernandez-Hernandez, 2009) rich
in phenolic components are subjected
to the action of antioxidant enzymes.
Postharvest oxidative stress occurs
during storage, causing an imbalance
between the production and removal
of reactive oxygen species, such as
H,0,, O,-, and OH- radicals, from
the tissues. The protection of fruit or
vegetable cells from oxidative injury
depends on the enzymes and poly-
phenols level which scavenge the
reactive oxygen species, and prevent
harmful effects (Amiot et al., 1992;
Zeng et al., 2010). Antioxidants and
enzymatic inhibitors are used to
prevent browning by the chemical
reduction of quinones to colorless
ortho-diphenol reduction agents
(McEvily and Iyengar, 1992). Millard
reactions take place if the tempera-
ture is increased and reducing sugars
are present. Some reducing agents
have been investigated to prevent the
antioxidant reaction (Table 14.15).
Butylated hydroxyanisole and butyl-
ated hydroxytoluene are the most
commonly used synthetic antioxi-
dants; therefore, natural antioxidants
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such as phenolic compounds are
alternatives to synthetic antioxidants
(Chan et al., 2007; Jongjareonrak et
al., 2008; Yen et al., 2008).

14.6.4 MICROBIAL GROWTH

Microbial growth in food products
promotes deterioration and reduce
the shelf life (Ding et al., 2013).
Packaging provides some level of
protection to food products from
external and internal unfavorable
conditions (Mihindukulasuriya
and Lim, 2014). Those films have
nutrients as substrates for micro-
bial growth. In order to improve
the efficiency and stability of edible
coating-films, it is essential to find
adequate materials (Flores-Lopez,
2015). The incorporation of antimi-
crobial agents into the used in edible
films could enhance its functional
properties by retarding microor-
ganism (Soares et al., 2009; Sire-
Ikhatim et al., 2015; Malhotra et al.,
2015). Essential oils and polyphenols
(tannins, flavonoids, phenolic acids,
secondary plant metabolites (Espitia
et al., 2014) are listed in Table 14.2,
as natural antimicrobials. A concern
regarding some functional additives
is their flavor and aroma. Sensory
evaluation of edible films and food-
stuffs packaged is scarce; however,
many active compounds are known
to be accepted by consumers (Otoni
etal., 2017).
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